Countably generated flat modules are quite flat

نویسندگان

چکیده

We prove that if $R$ is a commutative Noetherian ring, then every countably generated flat $R$-module quite flat, i.e., direct summand of transfinite extension localizations in countable multiplicative subsets. also show the spectrum cardinality less than $\kappa$, where $\kappa$ an uncountable regular cardinal, modules with generators. This provides alternative proof fact over ring spectrum, all are flat. More generally, we say CFQ presented von Neumann rings and $S$-almost perfect CFQ. A zero-dimensional local only it perfect. domain its proper quotient valuation strongly discrete.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Flat Modules, and Flat Modules for Finite Groups

If R is a ring of coefficients and G a finite group, then a flat RG-module which is projective as an R-module is necessarily projective as an RG-module. More generally, if H is a subgroup of finite index in an arbitrary group Γ, then a flat RΓmodule which is projective as an RH-module is necessarily projective as an RΓ-module. This follows from a generalization of the first theorem to modules o...

متن کامل

Relative Cotorsion Modules and Relative Flat Modules

Let R be a ring, M a right R-module, and n a fixed non-negative integer. M is called n-cotorsion if Extn+1 R N M = 0 for any flat right R-module N . M is said to be n-flat if ExtR M N = 0 for any n-cotorsion right R-module N . We prove that ( n n is a complete hereditary cotorsion theory, where n (resp. n) denotes the class of all n-flat (resp. n-cotorsion) right R-modules. Several applications...

متن کامل

MULTIPLICATION MODULES THAT ARE FINITELY GENERATED

Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...

متن کامل

Strongly Gorenstein projective , injective and flat modules

Let R be a ring and n a fixed positive integer, we investigate the properties of n-strongly Gorenstein projective, injective and flat modules. Using the homological theory , we prove that the tensor product of an n-strongly Gorenstein projective (flat) right R -module and projective (flat) left R-module is also n-strongly Gorenstein projective (flat). Let R be a coherent ring ,we prove that the...

متن کامل

Epic Envelopes by Generalized Flat Modules

We establish equivalent conditions under which every right Rmodule has an epic X -envelope, when X is a Tor-orthogonal class of left-Rmodules. As particular cases, one may recover and complete known results on various generalizations of flatness. MSC 2000. 16D50, 16D40.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Commutative Algebra

سال: 2022

ISSN: ['1939-0807', '1939-2346']

DOI: https://doi.org/10.1216/jca.2022.14.37